

Observational Evidence for Trends and Variability in the Hadley Cell Based on 15 Years of Scatterometer Ocean Surface Wind Estimates

Svetla Hristova-Veleva, Bryan Stiles, Ernesto Rodriguez, F. Joseph Turk

JPL, Caltech, Pasadena, California

January, 2017;
97th AMS Annual Meeting
Seattle, WA

The Global Circulation and the Hadley Cell

Originally uploaded in EarthLabs:Hurricanes.

3D view of the global wind circulation due to unequal heating at the equator and the poles.

The Hadley cell depicts the equator-to-pole heat exchange in the tropical atmosphere.

Relatively simple overturning circulation, with

- rising motion near the equator
- poleward motion near the tropopause
- sinking motion in the subtropics, and
- an equatorward return flow near the surface

Motivation

- Recent evidence suggests that the tropics have expanded over the last few decades by a very rough 1 degree per decade.
- This is considered to be an atmospheric response to the observed tropical ocean warming trend (e.g. Quan et al., 2004).
- If continued, the expansion of the tropics (the Hadley cell) could have a substantial impact on water resources and the ecology of the sub-tropics.
- Until now, the understanding of the mechanisms that govern the changing width of the tropics has been confined to models and proxies (e.g. Johanson and Fu, 2009; Hu and Fu 2007 (OLR); Lu et al. 2007 (precipitation /evaporation estimates) because of the unavailability of systematic observations of the large-scale circulation.
- Ocean surface vector winds, derived from scatterometer observations, provide for the first time an accurate depiction of the large-scale circulation and allow the study of the Hadley cell evolution through analysis of its surface branch.

Questions we ask ...

- How to define the extent and intensity of the Hadley cell from scatterometer observations?
- How are the signatures of the Hadley cell changing during the 10year QuikSCAT record?
- Looking beyond the QuikSCAT era:
 - The launches of ASCAT on METOP in 2006 and the ISRO's OceanSAT-2 in 2010 will assure the continuation of the climate data record of near-surface winds over the oceans.
 - Before we combine the signals from the different instruments we should:
 - Analyse them and understand whether they are consistent with each other
 - Determine the sources for disagreements if such are found
 - Failure to do so would lead to creating artificial cycles and trends in the Hadley cell structure
- How will RapidScat help!

Approach

- Use the observations from QuikSCAT and ASCAT. Compute statistics from time composites (1-year and 3-month running averages, offset by 2 weeks.)
- Determine the extent of the Hadley cell as defined by the subtropical zerocrossing of the zonally-averaged zonal wind component (the separation between the midlatitude westerlies and the easterly winds in the tropics).
- Determine the circulation strength as defined by the area of divergence/conv.

Divergence; Zonal Averages – means for 10 years

Zonal Component - 10 year mean

Zonal Component; Zonal Averages - means for 10 years

Approach

- Use the observations from QuikSCAT and ASCAT. Compute statistics from time composites (1-year and 3-month running averages, offset by 2 weeks.)
- Determine the extent of the Hadley cell as defined by the subtropical zerocrossing of the zonally-averaged zonal wind component (the separation between the midlatitude westerlies and the easterly winds in the tropics).
- Determine the circulation strength as defined by the area of divergence.

Zonal Component; Zonal Averages - means for 10 years

Width of Hadley as determined from: Global data; 1-year averages; The zero-crossing of U

The Oscillation – maybe related to La Nina/ El Nino

La Nina

Zonal Component – Year Beginning on 12-11-1999

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 1.000 1.500 3.600 7.000 7.000
Speed; Deviotion from Climatology for year starting on 1999–12–11; Magnitude of the Vector Speed DIFF * 1.

El Nino

Zonal Component – Year Beginning on 06-08-2002

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 1.000 1.500 3.600 7.000 7.000
Speed; Deviotion from Climatology for year starting on 2001—12—08; Magnitude of the Vector Speed DIFF # 1.

12-1999 4-2002

Geographical Variability

Pacific Basin

Atlantic Basin

It appears that the behavior has a geographical variability with:

- More pronounced trend in the Pacific
- More pronounced oscillations in the Atlantic

Looking beyond QuikSCAT

In summary

- There is a discontinuity the Hadley cell width record when using different satellites!!
- Diurnal variability might be the reason.
 - Tandem Missions what do they show
 - RapidSCAT will help attribute the differences

Tandem Missions (using running 3-month averages) Breaks in the Hadley width (by U) when using different satellites!!

Tandem Missions (using running 3-month averages) Breaks in the Hadley width (by U) when using different satellites!!

In summary

- There is a discontinuity the Hadley cell width record when using different satellites!!
- Diurnal variability might be the reason.
 - Tandem Missions what do they show
 - RapidSCAT will help attribute the differences

RapidScat Hadley Width by the Zonal Wind U

RapidScat Hadley Width by the Zonal Wind U

Hadley Width by U

Tandem Missions (using running 3-month averages) Breaks in the Hadley width (by U) when using different satellites!!

Diurnal Signals in Convergence

- How does the ITCZ convergence change when using observations from different scatterometers?
- Could we use the models to infer the Diurnal Signals in the Hadley cell?
- What is the diurnal signal in RapidScat observations

Convergence (area integral) – is there a break? Is ECMWF capturing the signal correctly?

- ECMWF shows no significant change between the QuikSCAT and the ASCAT periods
- Scatteromter observations show a change why the difference from ECMWF??

Hadley Convergence (Integral)

Hadley Convergence (Integral)

Stronger ITCZ convergence in the ASCAT observations (The Integral over the area of Convergence is more negative)

Summary

- We use scatterometer surface wind observations to detect the extent of the Hadley cell and to study its characteristics over the last 14 years.
- QuikSCAT period:
 - Two distinct cycles in the Hadley cell width during the first half of the QuikSCAT record
 - They are likely a reflection of the modulation of the Hadley cell by the La Nina(1999)/El Nino (2002) events that dominated this period.
 - A steady increase in the width during the later part of the QuikSCAT record
 - Different evolution of the Pacific Hadley cell versus that in the Atlantic.
 - Analyzing the time series of 3-month running averages reveals the seasonal variations of the Hadley cell.
- ASCAT period: Extending the record to include the ASCAT period shows more evidence for a trend and reveals another cycle (related to the developing El Nino??).
- There is a discontinuity between the two records. Need to understand why.
 - Diurnal variability might be the reason. RapidSCAT will help address this issue
- ECMWF analysis of the Hadley cell structure and evolution show differences from the scatterometer-based ones. These differences vary both in space and in time!

Summary (cont.): RapidScat

- We found breaks in the Hadley width (as determined from the zonal wind U) when using different satellites!!
- We suspected the cause might be an unaccounted for diurnal variability
- To investigate this diurnal signal we looked now at:
 - Tandem Missions
 - RapidScat observations !!
- Our analysis show that:
 - Tandem mission analyses seem to support the significance of the diurnal signal
 - RapidScat analyses
 - revealed that there is a significant variability in the Hadley Cell width, with a clear semidiurnal signal
 - provide strong evidence that the Hadley cell is wider during the ASCAT observing times than it is during the QuikScat observing times
 - This supports our theory that diurnal variability might be the cause for previously found discrepancies between QSCAT and ASCAT observations and supports our earlier findings

BACKUP